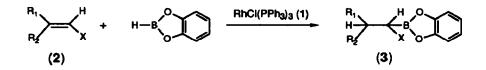


0040-4039(94)E0266-Z

Rhodium(I)-Catalysed Hydroboration Of 1-Halo-1-Alkenes


Said Elgendy^{*}, Geeta Patel, Vijay V. Kakkar, Goran Claeson, Donovan Green, Emmanuel Skordalakes, Jeban A. Baban, John Deadman

Thrombosis Research Institute, Emmanuel Kaye Building, Manresa Road, Chelsea, London SW3 6LR, UK,

Abstract: The hydroboration of 1-halo-1-alkenes by catecholborane is accelerated by a catalytic amount of Wilkinson's catalyst {RhCl(PPh₃)₃} to give α -halo boronic esters in good yields.

In our previous paper¹ we have reported the synthesis of α -haloboronic esters as precursors for novel thrombin inhibitors^{2.3}, by refluxing catecholborane with the corresponding α -haloalkene. The reaction was monitored by the disappearance of the olefinic proton in the ¹H nmr such that no dehalogenated products were formed which could be observed in significant amounts due to extended refluxing.

The hydroboration of simple alkenes with 1,3,2-benzodioxaborole (catecholborane) in the presence of rhodium complexes has raised the possibility to extend the utility of this reaction^{4,5}. In the present study, we have found that the hydroboration of an α -haloalkene (2) with catecholborane, which requires a temperature of 80-90°C without catalyst¹, occurs without difficulty at room temperature in the presence of the rhodium catalyst (1).

As a general procedure, in the presence of Wilkinson's catalyst (0.05-0.5% mol. equiv.), catecholborane (45mmol, 5.4g) was added dropwise to 1-halo-1-alkene

(30 mmol) in benzene (5ml), using techniques for handling air sensitive material⁶. The reaction mixture was left stirring at room temperature, and monitored by the disappearance of the olefinic protons from the ¹H nmr spectrum, until the reaction was complete. The desired product was isolated by distillation (using a Kugelrohr distillation apparatus under vacuum) in quantitative yields as shown in the Table.

As reported previously¹, we observe that chloro alkenes (Entry 4,5) react slower than the bromo alkenes (Entry 5,9). 1,2-Dichloroalkene failed to react with catecholborane giving the starting material (entry 6).

Entry	R ₁	R ₂	x	Catalyst mol %	Reaction time(h)	% yield of 3*
1	Н	н	Br	0.1	38	73
2	Me	Н	Br	0.1	8	82
3	$Me(CH_2)_3$	н	Br	0.5	48	54
4	Me	Me	Cl	0.2	24	70
5	Me	Me	Br	0.05	28	98
6	Cl	Н	Cl	0.5	72	-
7	Br	н	Br	0.1	24	65
8	CICH2	н	Cl	0.2	30	71
9	BrCH ₂	н	Br	0.1	5	79
10	Ph	н	Br	0.1	30	87

Table Hydroboration of R_1R_2C =CHX with catecholborane in the presence of (1)

a)Yield of isolated, characterised pure product.

REFERENCES

- 1. Elgendy, S.; Patel, G.; Green, D.; Kakkar, V. V.; Baban, J.; Scully, M. F.; Claeson, G.; Deadman, J.; *Tetrahedron*, in press.
- Elgendy, S.; Deadman, J.; Patel, G.; Kakkar, V. V.; Chino, N.; Goodwin, C.; Scully, M. F.; Claeson, G., Tetrahedron Lett., 1992, 33, 4209-4212.
- Kakkar, V. V.; Deadman, J.; Claeson, G.; Cheng, L.; Chino, N.; Elgendy, S.; Scully, M. F., International Patent Application No. WO 92/07869, 1992.
- 4. Mannig, D; North, H., Angew. Chem., Int. Ed. Engl., 1985, 24, 878.
- 5. Evans, D. A.; Fu, G. C.; Hoveyda, A. H., J. Am. Chem. Soc., 1988, 110, 6917.
- 6. Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M., Organic Synthesis via Borane; Wiley Interscience; New York, 1975.

(Received in UK 25 January 1994; accepted 4 February 1994)